skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Parsek, Matthew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Parsek, Matthew (Ed.)
    ABSTRACT Chronic polymicrobial infections involvingPseudomonas aeruginosaandStaphylococcus aureusare prevalent, difficult to eradicate, and associated with poor health outcomes. Therefore, understanding interactions between these pathogens is important to inform improved treatment development. We previously demonstrated thatP. aeruginosais attracted toS. aureususing type IV pili (TFP)-mediated chemotaxis, but the impact of attraction onS. aureusgrowth and physiology remained unknown. Using live single-cell confocal imaging to visualize microcolony structure, spatial organization, and survival ofS. aureusduring coculture, we found that interspecies chemotaxis providesP. aeruginosaa competitive advantage by promoting invasion into and disruption ofS. aureusmicrocolonies. This behavior rendersS. aureussusceptible toP. aeruginosaantimicrobials. Conversely, in the absence of TFP motility,P. aeruginosacells exhibit reduced invasion ofS. aureuscolonies. Instead,P. aeruginosabuilds a cellular barrier adjacent toS. aureusand secretes diffusible, bacteriostatic antimicrobials like 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) into theS. aureuscolonies. Reduced invasion leads to the formation of denser and thickerS. aureuscolonies with increased HQNO-mediated lactic acid fermentation, a physiological change that could complicate treatment strategies. Finally, we show thatP. aeruginosamotility modifications of spatial structure enhance competition againstS. aureus. Overall, these studies expand our understanding of howP. aeruginosaTFP-mediated interspecies chemotaxis facilitates polymicrobial interactions, highlighting the importance of spatial positioning in mixed-species communities. IMPORTANCEThe polymicrobial nature of many chronic infections makes their eradication challenging. Particularly, coisolation ofPseudomonas aeruginosaandStaphylococcus aureusfrom airways of people with cystic fibrosis and chronic wound infections is common and associated with severe clinical outcomes. The complex interplay between these pathogens is not fully understood, highlighting the need for continued research to improve management of chronic infections. Our study unveils thatP. aeruginosais attracted toS. aureus, invades into neighboring colonies, and secretes anti-staphylococcal factors into the interior of the colony. Upon inhibition ofP. aeruginosamotility and thus invasion,S. aureuscolony architecture changes dramatically, wherebyS. aureusis protected fromP. aeruginosaantagonism and responds through physiological alterations that may further hamper treatment. These studies reinforce accumulating evidence that spatial structuring can dictate community resilience and reveal that motility and chemotaxis are critical drivers of interspecies competition. 
    more » « less
  2. Parsek, Matthew (Ed.)
    ABSTRACT Histone-like nucleoid structuring (H-NS) and H-NS-like proteins serve as global gene silencers and work with antagonistic transcriptional activators (counter-silencers) to properly coordinate the expression of virulence genes in pathogenic bacteria. InBrucella, MucR has been proposed as a novel H-NS-like gene silencer, but direct experimental evidence is lacking. Here, we show that MucR serves as an H-NS-like silencer of theBrucella abortusgenes encoding the polar autotransporter adhesins BtaE and BmaC, the c-di-GMP-specific phosphodiesterase BpdB, and the quorum-sensing regulator BabR. We also demonstrate that the MarR-type transcriptional activator MdrA can displace MucR from thebtaEpromoter, supporting the existence of MucR counter-silencers inBrucella. Moreover, our chromatin immunoprecipitation (ChIP)-seq analysis identified 546 MucR enrichment peaks along the genome, including in the promoters of the genes encoding the Type IV secretion machinery and effectors and the quorum-sensing regulator VjbR. Importantly, MucR ChIP-seq peaks overlap with the previously described binding sites for the transcriptional activators VjbR, BvrR, and CtrA suggesting that these regulators serve as MucR counter-silencers and work in concert with MucR to coordinate virulence gene expression inBrucella. In addition, using chromosome conformation capture (Hi-C), we show that like H-NS inEscherichia coli, MucR alters the global structure of theBrucellanucleoid. Finally, a copy of theE. coli hnsrescues the distinctive growth defect and elevatedbtaEexpression of aB. abortus mucRmutant. Together, these findings solidify the role of MucR as a novel type of H-NS-like protein and suggest that MucR’s gene-silencing properties play a key role in virulence inBrucella. IMPORTANCEHistone-like nucleoid structuring (H-NS) and H-NS-like proteins coordinate host-associated behaviors in many pathogenic bacteria, often through forming silencer/counter-silencer pairs with signal-responsive transcriptional activators to tightly control gene expression.Brucellaand related bacteria do not encode H-NS or homologs of known H-NS-like proteins, and it is unclear if they have other proteins that perform analogous functions during pathogenesis. In this work, we provide compelling evidence for the role of MucR as a novel H-NS-like protein inBrucella. We show that MucR possesses many of the known functions attributed to H-NS and H-NS-like proteins, including the formation of silencer/counter-silencer pairs to control virulence gene expression and global structuring of the nucleoid. These results uncover a new role for MucR as a nucleoid structuring protein and support the importance of temporal control of gene expression inBrucellaand related bacteria. 
    more » « less
  3. Parsek, Matthew (Ed.)
    ABSTRACT Many bacterial species typically live in complex three-dimensional biofilms, yet much remains unknown about differences in essential processes between nonbiofilm and biofilm lifestyles. Here, we created a CRISPR interference (CRISPRi) library of knockdown strains covering all known essential genes in the biofilm-forming Bacillus subtilis strain NCIB 3610 and investigated growth, biofilm colony wrinkling, and sporulation phenotypes of the knockdown library. First, we showed that gene essentiality is largely conserved between liquid and surface growth and between two media. Second, we quantified biofilm colony wrinkling using a custom image analysis algorithm and found that fatty acid synthesis and DNA gyrase knockdown strains exhibited increased wrinkling independent of biofilm matrix gene expression. Third, we designed a high-throughput screen to quantify sporulation efficiency after essential gene knockdown; we found that partial knockdowns of essential genes remained competent for sporulation in a sporulation-inducing medium, but knockdown of essential genes involved in fatty acid synthesis exhibited reduced sporulation efficiency in LB, a medium with generally lower levels of sporulation. We conclude that a subset of essential genes are particularly important for biofilm structure and sporulation/germination and suggest a previously unappreciated and multifaceted role for fatty acid synthesis in bacterial lifestyles and developmental processes. IMPORTANCE For many bacteria, life typically involves growth in dense, three-dimensional communities called biofilms that contain cells with differentiated roles held together by extracellular matrix. To examine how essential gene function varies between vegetative growth and the developmental states of biofilm formation and sporulation, we created and screened a comprehensive library of strains using CRISPRi to knockdown expression of each essential gene in the biofilm-capable Bacillus subtilis strain 3610. High-throughput assays and computational algorithms identified a subset of essential genes involved in biofilm wrinkling and sporulation and indicated that fatty acid synthesis plays important and multifaceted roles in bacterial development. 
    more » « less